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Overview:

A novel approach to solving large multi-scale image based problems was explored opening up the
possibility of solving for very large finite element and finite volume problems on modest
computational platforms. This is being implemented as a software tool as part of ‘Material Toolbox’
for use by the research and development community.

Background:

Synthetic and natural micro-architectures occur frequently (e.g. MMC foams, bone, etc.) and
multiphase functionally graded composites are becoming increasingly popular for applications
requiring optimized/tailored material properties. When dealing with such materials computationally
one issue which immediately arises is the analysis of the mechanical properties of macroscopically
inhomogeneous multi-scale structures. The bulk response of these structures can be determined by
performing “full' finite element analysis, that is, with the entire geometry discretized at a resolution
high enough to accurately model the smallest length scale of interest. However, these full models
may easily exceed hundreds of millions, potentially billions, of degrees of freedom and solving
problems of this magnitude may only be possible with the use of supercomputing facilities.
Additionally, in an iterative optimization process where the “performance' of the structure may be
evaluated thousands of times the use of full FEA simulations becomes highly impractical. When the
performance of a structure is evaluated in an optimization process typically only some aspect of the
bulk response, such as deflection, is considered. For such properties full FEA simulations model the
problem may be excessive. In the present project a novel two stage approach to solving such large
problem by performing element by element homogenization of the micro-structure followed by
solving the global problem with a coarser mesh as will be outlined below was explored.

Approach explored:

The approach taken is effectively based on creating a coarse tetrahedral/hexahedral discretization of
the domain using traditional volume meshing techniques and assigning appropriate material
properties based on a finite element homogenization based on high resolution mesh at the micro-
structural level of the macro tetrahedra or hexahedra. In effect two length scales are decoupled by
computing effective properties using the finite element approach for each macro-element. The
novelty here lies in effectively discretizing the ‘full’ 3D mesh into larger tetrahedra and hexahedra
and computing homogenized properties for each macro-element based on exact meshed domains
representing the full microstructural complexity within the macro-elements.

Methodology/Project Outline:

The project was implemented in several steps:
1. Homogenization for linear elastic material properties on a hexahedral domain

In the limit of small deformations, elastic materials are described by the linear theory of elasticity. In
an elastic body at equilibrium and in the absence of body forces, the stress and strain fields ¢ and €
satisfy the equations
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V-6=0, €= %[Vu + (Vu)T], (1)

where u(x) = x - x, is the displacement of the point x of the body relative to its position x; in a
reference stress-free state [Milton, p. 22]. The rank-two symmetric tensors @ and € are linked by the
constitutive relation

6=Ceg (2)

where C is the (rank-four) constitutive tensor (also called the stiffness tensor; here we avoid this
term due to possible confusion with the notion of a stiffness matrix used in finite element analysis).
In a heterogeneous medium C is position-dependent [C = C(x)]. Thanks to this relation, egs. (1)
can be reduced to a single (vectorial) equation for the displacement u:

V-{C[Vu+ (Vu)T]} = 0. (3)

In composite media one can usually distinguish three distinct length scales [Milton, p. 7]. The
microscale is characterized by the typical size [; of heterogeneities: it is the scale on which the
intrinsic material properties, such as C(x) for elasticity, vary. The mesoscale is characterized by a
length [, at which the material appears “statistically homogeneous”. At this scale constitutive
relations, such as eq. (2), become valid in the sense of averages:

6(x) = Cer(x) €(x), (4a)

where C(x) is the effective constitutive tensor at point x and the overbar denotes the moving
average:

o(x) = f Hy - x) (), (4b)

where H(x) is some convenient window function, e.g. H(x) = 1if |x| < [, and 0 otherwise.

Finally, the macroscale is characterized by a length l; at which the effective material properties, such
as Cefr(x), undergo substantial variations. If the mesoscale is much smaller than the macroscale
(I, < I3), it becomes possible to radically simplify the conceptual and numerical analysis of the
composite medium, while preserving its macroscopic behaviour, by replacing the rapidly varying
constitutive tensor C(x) by the much more slowly varying (or constant) tensor Cqg(x).

Equation (4) can serve as the operational definition of the effective constitutive tensor Cq¢ [Hashin
1983]. To calculate its value for a given composite material, one needs then to substitute for o(x)
and €(x) valid solutions of the elasticity equations (1)—(2) in a domain ( being the support of the
window function H(x). The tensor Cqg has 81 components, only 21 of which, however, are
independent [Saad 2009, p. 80]. Owing to the symmetry properties of 6, € and C it is necessary to
use six linearly independent solutions (o;(x), €;(x)) (i = 1, 2, ..., 6) to determine all components of
Cesr- In the standard shorthand Voigt notation, in which the stress and strain tensors are written as
6-component column vectors and the constitutive tensor as a 6-by-6 symmetric matrix, the final
formula for Cegf is
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Ceff = [0'1 o, 03 04 05 06] [61 €, €3 €4 €5 66]_1; (5)
where o; and €; denote column vectors.

Except for composites with very particular geometric structure (for example random ensembles of
spherical inclusions), the particular solutions (o;(x),€;(x)) needed to calculate the effective
constitutive tensor must be obtained numerically, and this is the approach we choose. We solve eq.
(4) with the finite element method in a hexahedral domain Q. We use ScanlP to mesh the domain
with linear tetrahedral elements and we expand each component of the unknown field u(x) into
globally continuous, piecewise linear scalar basis functions.

The choice of boundary conditions on the surface dQ of Q is an important aspect of numerical
homogenization. In theory, for a sufficiently large (i.e. statistically homogeneous) domain ( the
same value of the effective constitutive tensor Ceg should be obtained for any field u(x) satisfying
eqg. (3) in Q, and hence for any boundary conditions imposed on 9. In practice, however, due to
limited computational resources, simulations are often done on domains too small to be fully
statistically homogeneous. In this case, the imposed boundary conditions do have (some) influence
on the calculated values. Four types of boundary conditions are commonly used in literature [Ostoja-
Starzewski 2006]:

e kinematic uniform boundary conditions:
u(x) =€,-x for xe€aq,

where €, is a constant symmetric tensor; it can be shown that €, is then the average strain
in the domain Q;
e static uniform boundary conditions:

o(x) -n(x) =0, -n(x) for x€09Q,

where @, is a constant symmetric tensor and n(x) is the unit vector normal to the surface
dQ at x; it can be shown that o is then the average stress in the domain (;
e periodic boundary conditions:

u(x+a;) =ulx) +¢ - x, oglx+a;) nlx+a;) =—-—0(x) nx) for xe€odq,
for a; being one of three linearly independent lattice vectors {a,, a,, as};

e mixed orthogonal boundary conditions (for example, uniform strain prescribed on two
opposite faces of a cuboid and uniform stress prescribed on the remaining four faces).

In each case, simulations must be done for six linearly independent values of the constant tensors €,
and 0.

On the boundary 9Q, the uniform boundary conditions introduce artificial features that would be
absent in a domain Q situated within a larger body of the composite material. In consequence,
simulations performed using kinematic uniform boundary conditions overestimate the effective
constitutive tensor [Ostoja-Starzewski 2006], while the application of static uniform boundary
conditions leads to an underestimated constitutive tensor. These effects are particularly strong
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when the boundary of the simulation domain 9 intersects material interfaces. Periodic boundary
conditions do not have this deficiency, but only as long as they are applied to genuinely periodic
composites. Mixed orthogonal boundary conditions are only applicable to materials of orthotropic or
higher symmetry [Hazanov and Amieur 1995], and the edges of the hexahedral computational
domain £ must be oriented parallel to the symmetry axes of the material. If these requirements are
satisfied, however, mixed orthogonal boundary conditions provide accurate predictions of the
effective constitutive tensor already for small computational domains.

Since in general we cannot assume the presence of any particular symmetries in the materials to be
homogenized, we have implemented the static and kinematic uniform boundary conditions, which
are applicable to all composites and to all shapes of domains (.

2. Homogenization for linear elastic material properties on a tetrahedral domain

The homogenization of linear elastic material properties with a regular hexahedral domain, as
described in the previous section, is a well-studied topic. However, the class of problems of interest
to this project (multi-scale structures with irregular domains) required that a different approach to
the calculation of the effective elastic properties be taken. The more straightforward case of a
regular hexahedral domain may be addressed by dividing the domain into regular hexahedral
elements, each of which can be assigned properties using the classical homogenization techniques
described previously.

For the more general case, this work exploited the use of robust all-tetrahedral volume meshing as a
method for dividing an irregular domain into smaller sub-volumes for homogenization. As each sub-
volume conformed to its parent macro-element a method for calculating their effective properties
was developed.

At the highest level the developed homogenization process involves treating the sub-volume as if it
were the actual macro-element. Appropriate boundary conditions are applied based on the shape
functions of the macro-element such that the sub-volume is constrained to the same modes of
deformation. A series of finite element simulations are then performed in order to determine the
sub-volume’s effective properties. A more detailed description of this process in 2D follows,
however the approach taken extends directly to 3D with linear tetrahedral elements.

3. Constitutive Matrix Recovery from a 3 Noded Triangle Element

To highlight the basic principle of the developed homogenization method this section will
demonstrate how the material properties of a simple 3-node element can be recovered by way of
virtual testing. This in itself has little to no direct practical use, but the principle is fundamental to
the developed homogenization method.

The Constant Strain Triangle (CST) element is chosen due to its simplicity.
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Figure 1: A 3-node constant strain triangle element. Nodes are numbered anticlockwise.

We know that the constitutive matrix and element geometry determine the behavior of the
element. This is clear from how the element's stiffness matrix, K, is calculated:

K = tABTCB (6)

where A is the area of the triangle, C the constitutive tensor and t the thickness of the element. The
B matrix is constructed from the element's shape functions, a set of linear displacement functions.
For an isotropic material in 2D the constitutive tensor is defined as:

c

1-v (7)
2

12

1
E v
0

(=
o

where E is the Young’s modulus and v the Poisson’s ratio. Due to symmetry in the matrix there are
only six independent components and hence six unknown values to find in the case of general
anisotropy.

We know that applying a displacement to one of the element's nodes will result in a force, as
described by Hooke's Law:

F=K-U (8)

where F is the force vector and U the displacement vector. Substituting equation 6 into equation 8§,
it is possible to express these forces in terms of the unknowns, C:

F = tABTCB-U (9)

The expression in equation 9 will provide a system of linear equations with a set of unknowns.
However, for a single test the system is underdetermined and it can be shown that further tests are
required to establish an over-determined system. In 2D three tests are required, whereas in 3D six
are required. A solution for the over-determined system is then calculated using the least squares
method.

Thus far it has been shown that by imposing displacements on the macro element’s nodes and
measuring the resulting forces it is possible to recover the full constitutive matrix. This alone is of no
practical use, but instead provides a starting point for bridging the gap between the micro and
macro scale.
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In the previous scheme the virtual tests could be described using a simple displacement vector as
they were performed on a single element. However, in this case the virtual tests are to be performed
on the micro mesh. To achieve this we constrain the displacement of the so-called “external micro
nodes” to the surface of the macro element. This constraint is used so that the area discretized by
the micro elements is limited to behave as if it were the macro element. To perform the virtual tests
we first compute the displacement of each of the external micro nodes. Given a displacement vector

U = {w;, vy, uj, v, U, Ui }

we prescribe the external micro nodes displacements using weightings calculated from the macro
element’s shape functions, N;, Nj, Ny,

Ax = Nju; + Nju; + Ny, (10)
Ay = Nyv; + Njvj + Nypvpy

Nodes which do not lie on the macro element’s boundary are left unconstrained.

Following a series of virtual tests a number of forces on the external micro nodes will have been
computed. As the process of recovering the effective constitutive matrix requires the forces on the
macro element we compute the effective macro forces from the measured micro forces. Similarly to
the calculation of the displacements, the effective macro forces are calculated as a weighted sum of
the micro forces using the macro element’s shape function:

Fi= |t (12)

where F; is the macro force vector for macro node i, n the number of external micro nodes and F,f
and F,f the x and y components of the micro force vector for node k. Substituting these effective
macro forces into equation 9 we are able to compute the effective constitutive matrix for the sub-
volume.

4. Validation:

As part of the validation of the developed homogenization technique for tetrahedral sub-volumes a
homogeneous sub-volume with fully anisotropic material properties was used as a “sanity test”. The
input material properties were accurately recovered.

More interestingly, the technique was also used to recover the effective properties of a real world
structure and compared to the results obtained using classical methods. The Schoen Gyroid was
chosen for this purpose as its periodic geometry allows periodic boundary conditions to be used.
These boundary conditions are often considered to be the exact solution.

Figures 2 and 3 show the effective Young’s modulus and shear modulus of a sample of the Schoen
Gyroid structure at various volume fractions. The effective properties were calculated using the
classical homogenization technique with kinematic uniform boundary conditions (“KUBC”), periodic
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boundary conditions and with the developed method. In each case a different domain was used to
ensure a fair comparison:

e KUBC—acube of 8 x 8 x 8 unit cells
e Periodic — a single unit cell
e Tetrahedral method — a single regular tetrahedron containing 83 unit cells

The results show an excellent agreement between the different methods.

Apparent properties - 8 x 8 x 8 unit cells (Schoen Gyroid)

N 5 5 ] KUBC —e—
PERIODIC -~~~
Tetrahedral Method ---#--
— - Voigt bound
0.8 g
HS+
[ — 4
o]
w
04 |
02 | E— - |
0
0 0.2 0.4 0.6 0.8 1

Volume fraction

Figure 2: Young’s modulus of the Schoen Gyroid at various volume fractions

Apparent properties - 8 x 8 x 8 unit cells (Schoen Gyroid)
0.35

KUBC —e—
,& PERIODIC -~ -
0.3 A Tetrahedral Method ----#---
0.25
0.2
3
6]
0.15
0.1
0.05
0
0 0.2 0.4 0.6 0.8 1

Volume fraction
Figure 3: Shear modulus of the Schoen Gyroid at various volume fractions
5. Sequential Solution of Two Stage Problem

Following the development of a technique to determine an effective constitutive matrix for an
arbitrary tetrahedral sub-volume we addressed the issue of multi-scale problems. Of particular
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interest are the set of problems having an irregular (i.e. non-cuboidal) domain. While problems of a
more regular nature may be addressed with more conventional methods of determining effective
constitutive matrices, they are never the less addressable using the methods developed in this work.

For many problems it is highly impractical to attempt to include all length scales in a finite element
model, consequently it is often desirable to only capture the coarser details. Rather than excluding
the smaller length scales we produce a coarse mesh with appropriate homogeneous material
properties. The previous section describes the process of computing these properties.

The process of generating the macro mesh is outlined in Figure 4. The homogeneous domain should
conform to the bounds of the original domain as closely as possible, representing the result of a

“shrink wrap' operation.

(b)

Figure 4: Femoral head modeling (a) input dataset, (b)coarse tetrahedralisation (c) micro-element

Each of the macro elements in the generated mesh is subsequently homogenized using the
developed technique. As each macro element is considered as an independent sub-volume the
processing may occur in either series or in parallel, depending on the available computational
resources. The final result is a macroscopic homogenous model with varying material properties
which can be exported to a traditional finite element package.

Conclusions:

Project showed that the approach could be successfully used on problems of interest for the elasto-
statics case and a complete pipeline from high resolution 3D image data through to multiscale (two
scale) analysis. The approach is currently being implemented in code for release in a version of
ScanlP. This is being carried out by Dr Wojciech Smigaj for a broad range of physics (rather than
solely for elasto-statics problems considered under the auspices of EOARDS grant).

Dissemination:

-Invited abstract accepted for oral presentation at Telford-UKIERI workshop on
“Anisotropic, heterogeneous and cellular materials: From microarchitecture to macro-level

response” in Edinburgh, December 12—14”‘, 2013. See attached abstract.

-Abstract submitted for oral presentation at 2™ International Congress on 3D Materials Science 2014
on “A novel approach to multiscale homogenisation” in Annecy, June 29" - July 2™, 2014.
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-Abstract submitted for oral presentation at 11" World Congress on Computational Mechanics
(WCCM XI) on “A novel approach to multiscale homogenisation for 3D micro-structures” in
Barcelona, July 20-25™, 2014.

;Paper in preparation on “Multi-scale homogeneisation”

-Visit to be arranged to AFRL Dayton, Ohio to present work carried out and explore collaboration
with AFRL research staff
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